Особенности оформления заданий повышенного уровня сложности с развернутым ответом

Терентьева Елена Ивановна, учитель математики МАОУ «Технологический лицей»

<u>Типичные ошибки:</u> <u>Задание 20</u>

- 1. Отсутствие ОДЗ;
- 2. Ошибки при решении квадратного уравнения (неверная запись формулы корней, дискриминанта);
- 3. Вычислительные ошибки;
- 4. Ошибки в действиях с рациональными числами;
- 5. При введении переменной t, нет обратной замены;
- 6. При умножении выражения на нуль!
- 7. Потеря слагаемых при равносильных преобразованиях;
- 8. Ошибки в формулах сокращенного умножения;
- 9. Описки, знаки «+» и «-»;
- 10. Приведение подобных слагаемых;
- 11. Допускают округление иррациональных чисел;
- 12. Переход от дробно-рационального уравнения к квадратному;
- 13. Запись ответа (в скобках);
- 14. Сложение двух дробей с разными знаменателями (дополнительные множители);
- 15. Словесное описание (лучше ничего не писать);
- 16. Сокращение дробей;
- 17. Термины.

Типичные ошибки:

Задание 21

- 1. Место нахождения скорости сближения при встречном движении сумма, пишут разность;
- 2. Перевод единиц измерения;
- 3. Неправильные формулы;
- 4. Отсутствие перехода от расстояния пройденного поездом к длине поезда;
- 5. Нет краткой записи (схемы, таблицы, единиц измерения);
- 6. Приближенные значения;
- 7. Вычислительные ошибки (сокращение дробей).

Вычислительная ошибка — ошибка, допущенная при выполнении арифметических действий (сложение, вычитание, умножение, деление)

<u>Типичные ошибки:</u> <u>Задание 22</u>

- 1. Вместо *D(y)* пишут ОДЗ;
- 2. Не учитывается D(y) при построении графика (выколотые точки);
- 3. Нет исследования (не пишут нахождение значений параметра);
- 4. Координатная плоскость (нет единичных отрезков, начало отсчета, направление и название координатных лучей);
- 5. Запись не соответствует построению (прямая или часть прямой);
- 6. Линейная функция ⇔ прямая пропорциональность;
- 7. Часть прямой $\rightarrow D(y) \rightarrow$ точки в таблице;
- 8. Отсутствие таблиц значений;
- 9. Нет разрыва/ конец первой его части является началом второй (точки склейки, разрыва);
- 10. Неверная запись значений параметра в виде двойного неравенства (-1 < m < -2 и (-1; -2);
- 11. Выписывают не все значения параметра;
- 12. Отсутствие проверки граничной точки;
- 13. Подпись графика функции;
- 14. Вычислительные ошибки;
- 15. Переход от графического представления к алгебраическому вычислению.

Задание 20. Решение уравнений и неравенств

1. Решение квадратного уравнения:

Если уравнение неполное, то решаем, применяя свойства коэффициентов или правила нахождения корня уравнения, определив какому из трех случаев соответствует данное уравнение.

Если уравнение полное, то решаем:

- а) либо по свойству коэффициентов;
- б) либо по теореме Виета;
- в) либо применяя формулу дискриминанта и формулы корней квадратного уравнения;
- г) либо разложением на множители.

21

Решите уравнение $x^4 = (2x-15)^2$.

Решение.

Исходное уравнение приводится к виду:

$$(x^2-2x+15)(x^2+2x-15)=0$$
.

Уравнение $x^2 - 2x + 15 = 0$ не имеет корней.

Уравнение $x^2 + 2x - 15 = 0$ имеет корни -5 и 3.

Ответ: -5; 3.

Баллы	Критерии оценки выполнения задания								
2	Обоснованно получен верный ответ								
1	Решение доведено до конца, но допущена описка или ошибка вычислительного характера, с её учётом дальнейшие шаги выполнены верно								
0	Другие случаи, не соответствующие указанным критериям								
2	Максимальный балл								

Задание 20. Пример 2. Решение 2/4

Решите уравнение $x^4 = (2x - 15)^2$.

Решение.

$$x^4 = (2x-15)^2$$
, $(x^2)^2 - (2x-15)^2 = 0$, $(x^2-2x+15)(x^2+2x-15) = 0$.

Произведение двух множителей равно нулю, если один из множителей равен нулю. Получаем: $x^2 - 2x + 15 = 0$ или $x^2 + 2x - 15 = 0$.

$$x^2 - 2x + 15 = 0$$
, $x^2 - 2x + 1 + 14 = 0$, $(x - 1)^2 = -14$ не имеет корней.

$$x^{2} + 2x - 15 = 0$$
, $x^{2} + 2x + 1 - 16 = 0$, $(x + 1)^{2} - 4^{2} = 0$, $(x + 1 - 4)(x + 1 + 4) = 0$, $(x - 3)(x + 5) = 0$

откуда x - 3 = 0 или x + 5 = 0; x = 3 или x = -5.

Ответ: -5; 3.

Задание 20. Пример 3. Решение 1/5

Решите уравнение $(x-1)^4 - 2(x-1)^2 - 3 = 0$.

Решение.

Пусть $t = (x-1)^2$, тогда уравнение принимает вид:

$$t^2 - 2t - 3 = 0$$
,

откуда t = -1 или t = 3.

Уравнение $(x-1)^2 = -1$ не имеет корней.

Уравнение $(x-1)^2 = 3$ имеет корни $1 - \sqrt{3}$ и $1 + \sqrt{3}$.

ОТВЕТ: $1-\sqrt{3}$; $1+\sqrt{3}$.

Баллы	Критерии оценки выполнения задания								
2	Обоснованно получен верный ответ								
1	Решение доведено до конца, но допущена описка или ошибка вычислительного характера, с её учётом дальнейшие шаги выполнены верно								
0	Другие случаи, не соответствующие указанным критериям								
2	Максимальный балл								

Задание 20. Пример 3. Решение 5

Решите уравнение $(x-1)^4 - 2(x-1)^2 - 3 = 0$.

Решение.

$$(x-1)^4 - 2(x-1)^2 - 3 = 0 \iff ((x-1)^2 - 1)^2 = 2^2 \iff \begin{bmatrix} (x-1)^2 = 3 \\ (x-1)^2 = -1 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} x - 1 = \sqrt{3} \\ x - 1 = -\sqrt{3} \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 1 + \sqrt{3} \\ x = 1 - \sqrt{3} \end{bmatrix}.$$

ОТВЕТ: $\{1-\sqrt{3}; 1+\sqrt{3}\}.$

Задание 20. Пример 3. Решение 3/5

Решите уравнение $(x-1)^4 - 2(x-1)^2 - 3 = 0$.

Решение.

Пусть $(x-1)^2 = t$, $t \ge 0$, тогда уравнение принимает вид:

$$t^2 - 2t - 3 = 0$$
, откуда $t = -1$ или $t = 3$.

t = -1 не удовлетворяет условию $t \ge 0$,

$$t=3$$
 ; $(x-1)^2=3$; $x-1=\sqrt{3}$ или $x-1=-\sqrt{3}$; $x=1+\sqrt{3}$ или $x=1-\sqrt{3}$.

Ответ: $1 - \sqrt{3}$; $1 + \sqrt{3}$.

1. Решение дробно рационального уравнения:

1 способ:

- 1 Перенести все члены уравнения в одну часть.
- 2 Привести к общему знаменателю и сложить полученные дроби.
- 3 Приравнять числитель к нулю и решить полученное уравнение.
- 4 Проверить, не обращают ли знаменатель в нулю полученные корни.

2 способ:

- 1 Найти общий знаменатель всех дробей, входящих в уравнение.
- 2 Умножить обе части уравнения на найденный общий знаменатель.
- 3 Решить полученное целое уравнение.
- **4** Проверить, не обращают ли полученные корни общий знаменатель в нуль.

$$\frac{1}{\chi^{2}} - \frac{1}{\chi} - 6 = 0$$

$$\frac{-6\chi^{2} - \chi + 1}{\chi^{2}} = 0$$

$$\begin{cases} -6\chi^{2} - \chi + 1 = 0 & -6\chi^{2} - \chi + 1 = 0 \\ \chi^{2} \neq 0 & \Re = 6^{2} - 4\alpha c = (-1)^{2} - 4 \cdot 1 \cdot (-6) = \\ \chi^{2} = \frac{1}{2} & \chi_{1,2} = -\frac{6 \pm \sqrt{8}}{2\alpha} \\ \chi_{2} = \frac{1}{3} & \chi_{1} = \frac{1 - 5}{-12} = \frac{1}{3} & \chi_{2} = \frac{1 + 5}{-12} = -\frac{1}{2} \end{cases}$$
Ombern: $-\frac{1}{2}$; $\frac{1}{3}$

Задание 20. Пример 4. Решение

Решите уравнение $\frac{1}{x^2} - \frac{1}{x} - 6 = 0$.

Решение.

Пусть $t = \frac{1}{x}$, тогда уравнение принимает вид:

$$t^2 - t - 6 = 0$$
,

откуда t = -2 или t = 3.

Уравнение $\frac{1}{x} = -2$ имеет корень $-\frac{1}{2}$.

Уравнение $\frac{1}{x} = 3$ имеет корень $\frac{1}{3}$.

Таким образом, решение исходного уравнения: $x = -\frac{1}{2}$ и $x = \frac{1}{3}$.

Ответ: $-\frac{1}{2}$; $\frac{1}{3}$.

Баллы	Критерии оценки выполнения задания								
2	Обоснованно получен верный ответ								
1	Решение доведено до конца, но допущена описка или ошибка вычислительного характера, с её учётом дальнейшие шаги выполнены верно								
0	Другие случаи, не соответствующие указанным критериям								
2	Максимальный балл								

Задание 20. Пример 4. Работа 2

$$\frac{1}{3i^{2}} \frac{1}{3i} \cdot 6 = 0$$

$$\frac{(-x - 6)e^{2} = 0}{2i} | 2e^{2} e^{2}$$

$$-6x^{2} - x + 1 = 0$$

$$0 = 1 - 4 \cdot (-6) \cdot 1 = 25 = 5^{2}$$

$$21 = -9.5^{-}$$

$$22 = 1$$

$$3$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

№ 20 с 2021 года

Решите уравнение
$$\frac{1}{x^2} - \frac{1}{x} - 6 = 0$$
.

Ответ:
$$-\frac{1}{2}$$
; $\frac{1}{3}$.

Баллы	Критерии оценки выполнения задания								
2	Обоснованно получен верный ответ								
1	Решение доведено до конца, но допущена описка или ошибка вычислительного характера, с её учётом дальнейшие шаги выполнены верно								
0	Другие случаи, не соответствующие указанным критериям								
2	Максимальный балл								

0 баллов

1. Решение неравенств:

Метод интервалов — это специальный алгоритм, предназначенный для решения сложных неравенств вида f(x) > 0 и f(x) < 0.

Алгоритм состоит из 4 шагов:

- 1. Рассмотреть функцию y = f(x);
- 2. Решить уравнение f(x) = 0. Таким образом, вместо неравенства получаем уравнение, которое решается намного проще;
- 3. Отметить все полученные корни на координатной прямой.
- Таким образом, прямая разделится на несколько интервалов;
- 4. Выяснить знак (плюс или минус) функции f(x) на самом правом интервале.
- Для этого достаточно подставить в f(x) любое число, которое будет правее всех отмеченных корней;
- 5. Отметить знаки на остальных интервалах. Для этого достаточно запомнить, что при переходе через каждый корень знак меняется.

Вот и все! После этого останется лишь выписать интервалы, которые нас интересуют. Они отмечены знаком «+», если неравенство имело вид f(x) > 0, или знаком «-», если неравенство имеет вид f(x) < 0.

$$(x-7)^{2} < \sqrt{11} (x-7)$$

$$\chi^{2} - 14\chi + 49 - \sqrt{11} \chi + 7\sqrt{11} < 0$$
we may write place by
$$y = \chi^{2} - (14 + \sqrt{11})\chi + 49 + 7\sqrt{11}$$

$$\chi(y) = \chi$$
we preserve the series of the se

Графический способ (метод парабол);

Решите неравенство $(x-7)^2 < \sqrt{11}(x-7)$.

Решение.

$$(x-7)^2 < \sqrt{11}(x-7); x^2 - (14+\sqrt{11})x+49+7\sqrt{11} < 0.$$

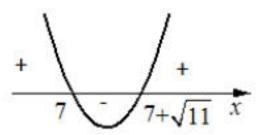
Рассмотрим функцию $y = x^2 - (14 + \sqrt{11})x + 49 + 7\sqrt{11}$. Квадратичная функция, графиком является парабола, ветви которой направлены вверх.

Найдем нули функции:
$$x^2 - (14 + \sqrt{11})x + 49 + 7\sqrt{11} = 0$$
;

$$x = \frac{14 + \sqrt{11} - \sqrt{11}}{2}$$
, $x = \frac{14 + \sqrt{11} + \sqrt{11}}{2}$; $x = 7$, $x = 7 + \sqrt{11}$.

Схематично изобразим параболу

$$y = x^2 - (14 + \sqrt{11})x + 49 + 7\sqrt{11}$$
.
 $y < 0$ при $x \in (7; 7 + \sqrt{11})$



Ответ: $(7; 7 + \sqrt{11})$.

Алгебраический способ (совокупность систем)

Решите неравенство $(x-7)^2 < \sqrt{11}(x-7)$.

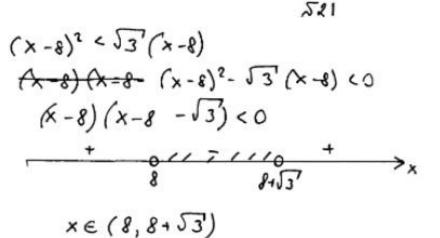
Решение.

$$(x-7)^{2} < \sqrt{11}(x-7) \iff (x-7)(x-7-\sqrt{11}) < 0 \iff \begin{cases} x-7 < 0, \\ x-7-\sqrt{11} > 0 \\ x-7 > 0, \\ x-7 > 0, \end{cases} \iff \begin{cases} x < 7, \\ x > 7+\sqrt{11} \\ x > 7, \\ x > 7, \end{cases} \iff 7 < x < 7+\sqrt{11}.$$

Ответ: $(7; 7 + \sqrt{11})$.

Задание 20. Пример 1. Работа 1

№ 20 с 2021 года



Omben x E (8, 8+53)

21 Решите неравенство
$$(x-8)^2 < \sqrt{3}(x-8)$$
.

Решение.

Преобразуем исходное неравенство:

$$(x-8)(x-8-\sqrt{3})<0$$
,

откуда
$$8 < x < 8 + \sqrt{3}$$
.

OTBET:
$$(8; 8 + \sqrt{3})$$
.

Баллы	Критерии оценки выполнения задания						
2	Обоснованно получен верный ответ						
1	Решение доведено до конца, но допущена описка или ошибка вычислительного характера, с её учётом дальнейшие шаги выполнены верно						
0	Другие случаи, не соответствующие указанным критериям						
2	Максимальный балл						

0 баллов

Нет решения неравенства, не прописан метод интервалов

Задание 20. Пример 1. Работа 2

№ 20 с 2021 года

 $(x-8)^{2} = \sqrt{3} \cdot (x-8)$ $(x-8)^{2} = \sqrt{3} \cdot (x-8) < 0$ $(x-8)(x-8-\sqrt{3}) < 0$ $(x-8)(x-9-\sqrt{3}) < 0$ $(x-9-\sqrt{3} > 0)$ $(x-9-\sqrt{3} < 0)$ (x-8)(x-8) **21** Решите неравенство $(x-8)^2 < \sqrt{3}(x-8)$.

Решение.

Преобразуем исходное неравенство:

$$(x-8)(x-8-\sqrt{3})<0$$
,

откуда
$$8 < x < 8 + \sqrt{3}$$
.

OTBET:
$$(8; 8 + \sqrt{3})$$
.

Баллы	Критерии оценки выполнения задания									
2	Обоснованно получен верный ответ									
1	Решение доведено до конца, но допущена описка или ошибка вычислительного характера, с её учётом дальнейшие шаги выполнены верно									
0	Другие случаи, не соответствующие указанным критериям									
2	Максимальный балл									

1 балл

Задание 21. Решение текстовых задач

Алгоритм:

- 1. Прочитать задачу;
- 2. Ввести неизвестную;
- 3. Составить таблицу (краткую запись, схему), выразить искомую переменную через данные и вспомогательные величины;
- 4. «По условию известно, что...». Построение математической модели;
- 5. Составить и решить уравнение, т.е. Решение математической модели;
- 6. Проанализировать полученный результат исходя из содержания задачи.
- 7. Записать ответ.

Задание 21. Пример 3. Работа 3

№ 21 с 2021 года

	V) tC	9 5 22
no mer	X+Y	77 X+9	77
y men	X-4	27 X-9	77

COCMABUM yparshenue:

$$\frac{77}{x-4} - \frac{77}{x+4} = 2$$

$$\frac{77}{x^2-16} = 0$$

$$0 = 0$$

$$0 = 3 : x \neq 4 : x \neq -4$$

Моторная подка прошла против течения реки // км и вернулась в пункт отправления, затратив на обратный путь на 2 часа меньше, чем на путь против течения. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 4 км/ч.

Ответ: 18 км/ч.¶

77 (
$$x+4-x+4$$
)-2($x=161=0$)
77 ($x+4-x+4$)-2($x=161=0$)
77 ($x+4-x+4$)-2($x=161=0$)
616-2 $x^2+32=0$
2 $x^2-648=0$
 $x^2=324$
 $x_1=18$

0 баллов

Задание 21. Пример 4. Работа 2

№ 21 с 2021 года

Два автомобиля одновременно отправляются в 240-километровый пробег. Первый едет со скоростью на 20 км/ч большей, чем второй, и прибывает к финишу на 1 ч раньше второго. Найдите скорость первого автомобиля. Ответ: 80 км/ч.

I abnore
$$\chi = \chi_{\chi} =$$

Задание 22. Построение графика той или иной функции, а затем указать, при каких значениях параметра этот график пересекается с неким другим графиком, касается его или же, к примеру, имеет с ним несколько точек пересечения

Встречаются:

Квадратичная функция; Дробно рациональная функция; Кусочная функция.

16. Линейная функция и её график

Пример 3. Построим график функции y = 2x + 3.

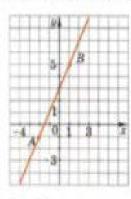
Функция y = 2x + 3 линейная, поэтому её графиком является прямая. Используя формулу y = 2x + 3, найдём координаты двух точек графика:

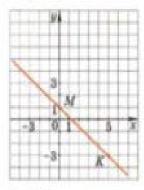
если x = -2, то $y = 2 \cdot (-2) + 3 = -1$:

если x = 1, то $y = 2 \cdot 1 + 3 = 5$.

Отметим точки A(-2; -1) и B(1; 5). Проведём через эти точки прямую (рис. 33). Прямая AB есть графии функции y = 2x + 3.

При построении графика линейной функции часто бывает удобно в качестве одной из точек брать точку с абсциссой 0.





Pwc. 33

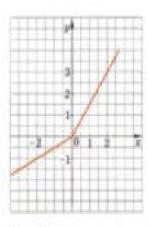
Pirc. 34

Пример 4. Построим график функции y = -0.8x + 1.

Найдём ноординаты двух точек графика:
 если x = 0, то y = −0,8 · 0 + 1 = 1;
 если x = 5, то y = −0,8 · 5 + 1 = −3,
 Отметим точки M (0; 1) и K (5; −3) и проведём через них примую (рис. 34), Прямая MK — график функции y = −0,8x + 1.

Для тех, кто хочет знать больше

17. Задание функции несколькими формулами



Pac. 46

 Π вимер 2. Построим графии функции y = x + 0.5 |x|.

▶ Освободимся от анака модула. Если x < 0, то |x| = -x. Эначит, y = x - 0.5x = 0.5x при x < 0.

Если $x \ge 0$, то |x| = x. Значит, y = x + 0.5x = 1.5x при $x \ge 0$. Итак, данную функцию можно задать двумя формулами:

$$y = \begin{cases} 0.5x, \text{ если } x < 0, \\ 1.5x, \text{ если } x \ge 0. \end{cases}$$

На рисунке 46 наображён графии этой функции. Он состоит из двух дучей. 🍕

7. Построение графика квадратичной функции

Чтобы построить график квадратичной функции, нужно:

- найти координаты вершины параболы и отметить ее в координатной плоскости;
- построить еще несколько точек, принадлежащих параболе;
- 3) соедилить отмеченные точки плавной линией.

Заметим, что абсциссу m вершины удобно находить по формуле $m = -\frac{b}{2a}$. Ординату n можно находить, подставив найденное значение абсциссы в формулу $y = ax^2 + bx + c$, так как при x = m

$$y = ax^{2} + bx + c = a(x - m)^{2} + n = n$$

Приведем примеры построения графиков квадратичных функций.

Пример 1. Построим графии функции $y = 0.5x^2 + 3x + 0.5$.

▶ Графиком функции y = 0,5x² + 3x + 0,5 ивляется парабола, ветаи которой направлены вверх. Найдем координаты т и п вершины этой параболы:

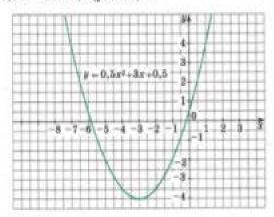
$$m = -\frac{b}{2a} = -\frac{3}{2 \cdot 0.5} = -3;$$

 $n = 0.5 \cdot (-3)^2 + 3 \cdot (-3) + 0.5 = -4.$

Значит, вершина параболы — точка (-3; -4). Составим таблицу значений функции:

1	-7	-6	-5	-4	-3	-2	-1	0	1
N.	4	0,5	-2	-3,5	-4	-3,5	-5	0,5	- 4

Построив точки, координаты которых укванны в таблице, и соединив их плавной линией, получим графии функции $y = 0.5x^2 + 3x + 0.5$ (рис. 31). \triangleleft



Pac. 31

При составлении тоблицы и построении графика учитывалось, что прямая x=-3 ивляется осью симмотран параболы. Поэтому мы брали точки с абсциссами -4 и -2, -5 и -1, -6 и 0, симмотричные относительно прямой x=-3 (эти точки имеют одинаковые ординаты).

Для тех, кто хочет знать больше

10. Дробно-линейная функция и ее график

Вам известны свойства и график функции $y = \frac{k}{x}$ при $k \ge 0$. Отметим еще одно свойство этой функции и особенность ее графика.

Прв пеограмиченном возрастании положительных значений аргумента значения функции, оставаясь положительными, убывают и стремятся к нулю, т. е. если x>0 и $x\to +\infty$, то $y\to 0$. Авалогично если x<0 и $x\to -\infty$, то $y\to 0$. На графике это свойство провъляется в том, что точки графика по мере их удаления в бесковечность (т. е. при $x\to +\infty$ или $x\to -\infty$) неограничению приближаются к оси x. Говорит, что ось x, т. е. приман y=0, является асимпию трафика функции $y=\frac{k}{\pi}$ при k>0.

Пример 1. Построим графии функции $y = \frac{2x+4}{x-1}$.

▶ Для этого выделям из дроби $\frac{2x+8}{x-1}$ целую часть, представив дробь в виде $x + \frac{k}{x-n}$,

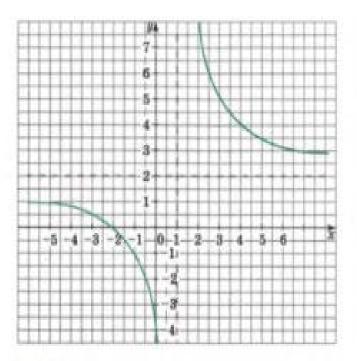
$$\frac{2x+4}{x-1} = \frac{2x-2+6}{x-1} = \frac{2(x-1)+6}{x-1} = 2 + \frac{6}{x-1}.$$

Здесь k = 6, m = 1, n = 2.

Имеек

График функции $y = \frac{6}{x-1} + 2$ можно получить из графика функции $y = \frac{6}{x}$ с помощью двух параллельных перевосок; сдвита гиперболы $y = \frac{6}{x}$ на 1 единицу вправо вдоль оси x и сдвита полученного графика $y = \frac{6}{x-1}$ на 2 единицы вперх в направлении оси y. При этом преобразовании единиутся и асимптоты гиперболы $y = \frac{6}{x}$; ось x перейдет в прямую $y \approx 2$, а ось y = 8 прямую x = 1.

Для построения графика данной функции поступим так: про ведем в координатной плоскости пунктиром асимптоты: прямую x = 1 и прямую y = 2. Так как гипербола состоит из двух ветвей, то для построения этих ветвей составим две



Parc. 45

таблицы: одну для x < 1, другую для x > 1.

x	-5	-3	-2	-1	0
y	1	0,5	0	-1	-4

r	2	3	4	5	7
y	8	5	4	3,5	3

Отметив в координатной плоскости точки, координаты которых указаны в первой таблице, и соединив их плавной непрерывной линией, получим одну ветвь гиперболы. Аналогично, используя вторую таблицу, получим вторую ветвь гиперболы.

График функции $y = \frac{2x+4}{x-1}$ изображен на рисунке 45. <

Постройте график функции

$$y = \begin{cases} x^2 - 2x + 1, & \text{если } x \ge -2, \\ -\frac{18}{x}, & \text{если } x < -2, \end{cases}$$

и определите, при каких значениях m прямая y=m имеет с графиком одну или две общие точки.

Решение.

Построим график функции $y = -\frac{18}{x}$.

Графиком является гипербола, состоящая из двух ветвей, расположенных во второй и четвертой четвертях.

Так как нужна ветвь гиперболы при x < -2, то строим ветвь во второй четверти.

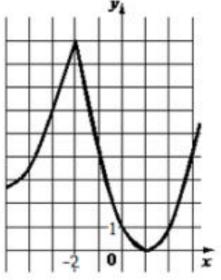
x	-1	/ -2	-3	-6	-9	-18
y	18	9	6	3	2	1

Построим график функции $y = x^2 - 2x + 1$. Квадратичная функция, графиком является парабола, ветви которой направлены вверх.

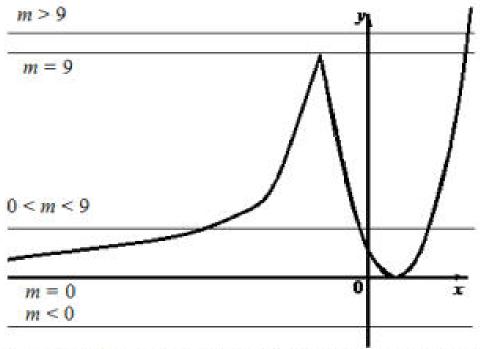
Вершина параболы — (1; 0). Так нам нужна часть параболы при при $x \ge -2$, то вычислим координаты точек при $x \ge -2$, учитываю симметрию относительно прямой x = 1.

х	-2	-1	0	1	2	3	4
y	9	4	1	0	1	4	9

Оставим ветвь гиперболы при x < -2 и часть параболы при $x \ge -2$. (В точке x = -2 происходит «склейка» графиков.)



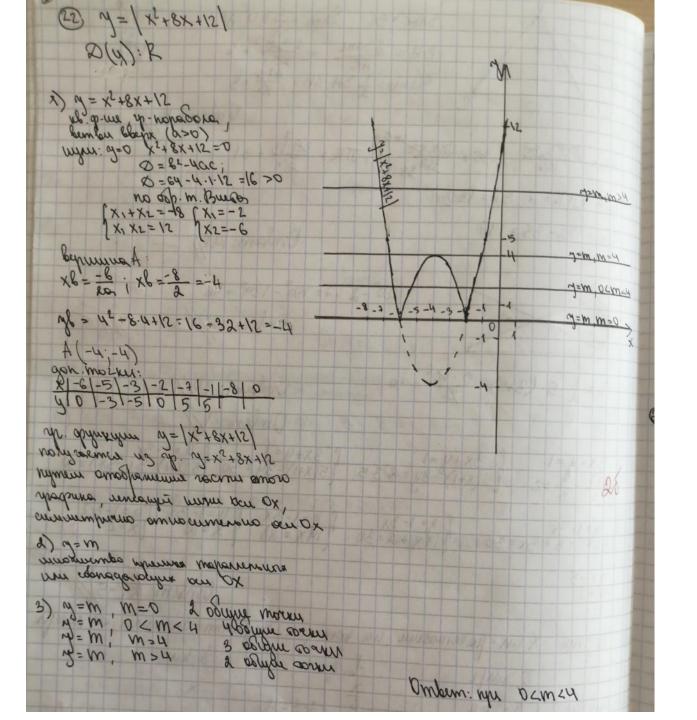
Построим семейство прямых y = m, параллельных или совпадающих с осью Ox.

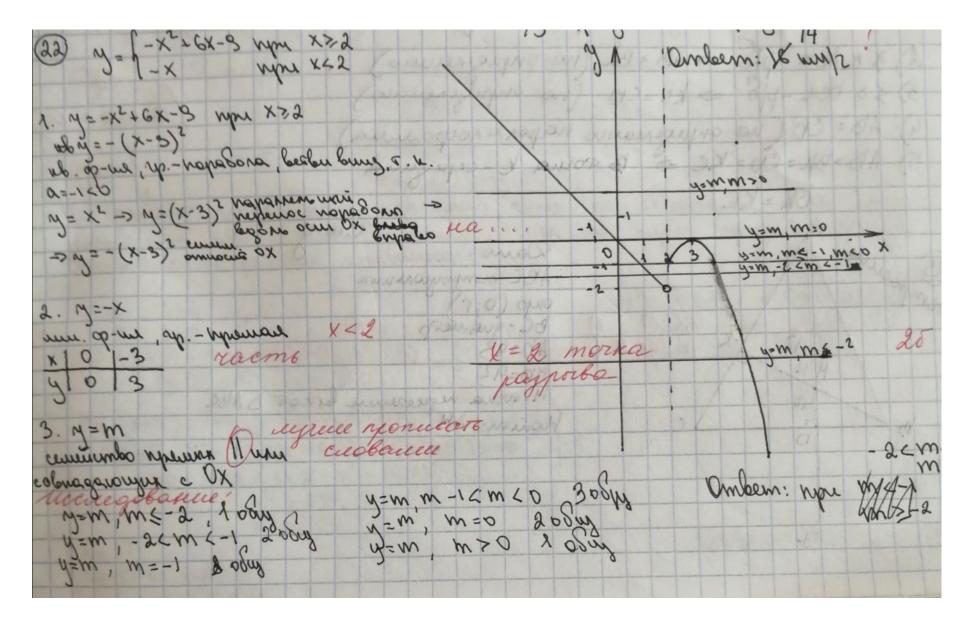


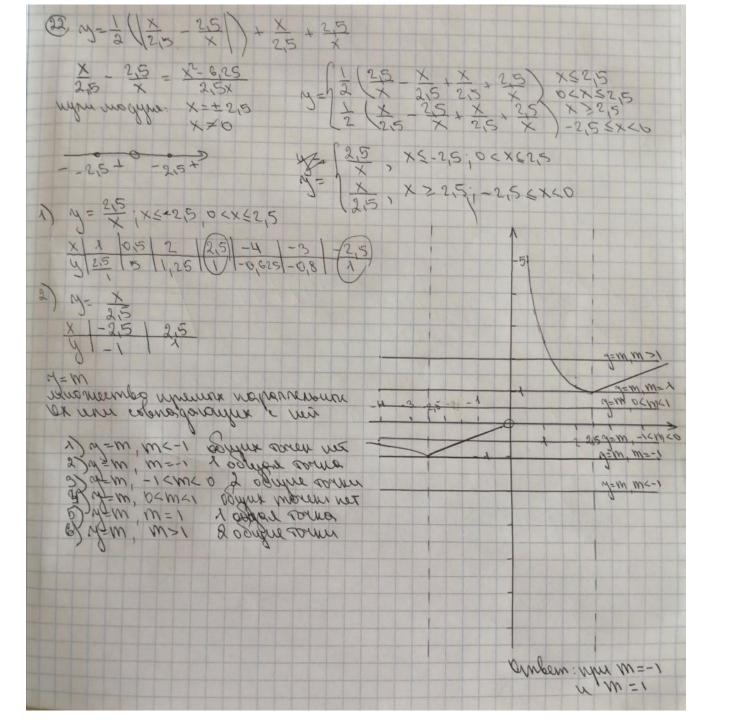
При m < 0 прямая y = m с графиком функции имеет общих точек; при m = 0 прямая y = m с графиком функции имеет одну общую точку; при 0 < m < 9 прямая y = m с графиком функции имеет три общих точки; при m = 9 прямая y = m с графиком функции имеет две общие точки; при m > 9 прямая y = m с графиком функции имеет одну общую точку.

Прямая y=m имеет с графиком одну или две общие точки при m=0 и при $m\geq 9$.

Ответ: $0; [9; +\infty)$.







Типичные ошибки Задание 23

- 1. Отсутствие чертежа (или не соответствует условию);
- 2. Допускают ошибки в чертежах (обозначение разных углов одинаковыми дугами);
- 3. Отсутствие дано или его части, дано не указано на чертеже;
- 4. Отсутствуют ссылки на свойства, определения, теоремы;
- 5. Путают названия углов (соответственные, смежные, накрест лежащие);
- 6. Пропускают части решения, не доказывают, что треугольник прямоугольный, применяют теорему Пифагора;
- 7. Допускают ошибки в пояснениях;
- 8. При введении обозначений, не описывают их;
- 9. Не прописывают дополнительное построение;
- 10. Допускают запись $AB^2 = 15$; $AB = \pm \sqrt{15}$
- 11. Допускают описки.

Типичные ошибки Задание 24

- 1. Ошибки при выполнении чертежа (дан выпуклый четырехугольник рисуют параллелограмм или ромб...);
- 2. Рассмотрение частного случая доказательства задачи (упрощают условие задачи);
- 3. При доказательстве используют окружность, при этом не описывают ее существование;
- 4. Путают признаки равенства треугольников и подобия треугольников;
- 5. Используют неправильные формулировки;
- 6. Не указывают почему треугольники подобны и признак подобия;
- 7. Производят подмену геометрических понятий (прямая отрезок, угол вершина);
- 8. Обозначение углов одной буквой;
- 9. Необоснованный вывод пропорциональности сходственных сторон;
- 10. Использование фактов без доказательства;
- 11. Использование букв, отсутствующих на чертеже;

Около любого четырехугольника можно описать окружность!

Типичные ошибки Задание 25

- 1. Неверное построение окружности;
- 2. Отсутствие доказательства подобия треугольников;
- 3. Отсутствие введения переменной;
- 4. Отсутствие принадлежности точки к прямой;
- 5. Введение дополнительных (несуществующих фактов и условий...);
- 6. Неверная трактовка следствия из теоремы о касательных и секущих.